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Abstract. The Fenchel problem of level sets is solved under the conditions that the boundaries of the
nested family of convex sets in Rn+1 are given by C3
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1. Introduction

It is well-known that a convex function has convex less-equal level sets. That the
converse is not true was realized by de Finetti (1949). The problem of level sets,
discussed first by Fenchel in 1953, is as follows: Under what conditions is the
family of level sets of a convex function a nested family of closed convex sets?
Fenchel (1953, 1956) gave necessary and sufficient conditions for the existence
of a convex function with the prescribed level sets and the existence of a smooth
convex function under the assumption that the given subsets are the level sets of
a twice differentiable function. In the first case, seven conditions were deduced,
and while the first six are simple and intuitive, the seventh is rather complicated.
This fact and the additional assumption in the smooth case, according to which the
given subsets are the level sets of a twice differentiable function, seem to be the
motivation that Roberts and Varberg (1973, p.271) drew up anew the following
problem of level sets: “What “nice” conditions on a nested family of convex sets
will ensure that it is the family of level sets of a convex function?” In the sequel,
the notions of convexifiability and concavifiability are used as synonyms, because
if a function f is convex, then �f is concave.

In theory of economics, Debreu (1954) proved his famous theorem on the rep-
resentation of a continuous and complete preference ordering by a utility function.
It is obvious that the utility function, whose existence is given by the Debreu the-
orem, is quasiconcave if the preference ordering is convex. Crouzeix (1977) and
Kannai (1977, 1981) studied the problem of concavifiability of convex preference
orderings, i.e., the problem of the existence of a concave function having the same
level sets as a given continuous quasiconcave one and they improved the Fenchel
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results. This problem can be important in several economic and bargaining sit-
uations. The conditions provided for the cases of continuous, differentiable and
twice differentiable quasiconcave functions are intimately related to constructions
of special (least concave) utility representations. (By Debreu (1976), a utility func-
tion is said to be least concave on a convex set if every concave utility function
defined on the same set can be represented by a concave transformation of the
given utility function.) Crouzeix (1977) and Kannai (1981) introduced auxiliary
functions, observing that the concavifiability of a quasiconcave function is essen-
tially a one-dimensional phenomenon, and that if the convex preference ordering
is concavifiable, then a suitably constructed auxiliary quasiconcave utility function
has to possess finite and non-vanishing one-sided directional derivatives.

An unusual feature of concavifiability theory, as presented in Kannai (1977), was
the use of Perron’s integral in expressing concavifiability in terms of second-order
(one-point) conditions involving a twice differentiable quasiconcave utility func-
tion. It turns out that in case a function like this exists at all, the auxiliary function
is also twice differentiable, and the associated function, whose Perron integrability
is equivalent to concavifiability, has a constant sign, hence Perron integrability is
equivalent (in the term of auxiliary functions) to Lebesque integrability (Crouzeix,
1977 and Kannai, 1981).

Rapcsák (1991) gave an explicit formulation of the gradient of the class of
the smooth pseudolinear functions (both pseudoconvex and pseudoconcave). This
result means an extension of the Cauchy functional equation and the solution of the
Fenchel problem in the case of a nested family of convex sets whose boundaries
are of hyperplanes which define an open convex set, and if this family of convex
sets corresponds to the less-equal level sets of smooth pseudolinear functions. We
have to point out that the pseudolinear functions are contained in a special class
of functions which is more general than the class of linear functions (both convex
and concave). The following theorem was proved for characterizing the gradient
of the smooth pseudolinear functions:

THEOREM 1.1 (Rapcsák, 1991a). Let a three times continuously differentiable
function f be defined on an open convex set A � Rn and assume that rf(x) 6=
0, x 2 A. Then, f is pseudolinear on A iff there exist twice continuously differ-
entiable functions l(x), �i(f(x)), i = 1; . . . ; n, x 2 A, such that the following
conditions are satisfied:

@f(x)
@xi

= l(x)�i(f(x)); i = 1; . . . ; n; x 2 A: (1.1)

In order to construct pseudolinear functions, the next theorem can be useful.

THEOREM 1.2 (Rapcsák, 1991a). If the functions l(x), �i(f(x)), i = 1; . . . ; n, x 2
A; have continuous derivatives in all arguments on an open set A � Rn and if
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they satisfy the compatibility conditions

@l(x)
@xj

�i(f(x)) + l2(x)
d�i(f(x))

df
�j(f(x)) =

@l(x)
@xi

�j(f(x)) + l2(x)
d�j(f(x))

df
�i(f(x)); (1.2)

i; j = 1; . . . ; n; x 2 A;

then a uniquely determined continuously differentiable solution of the system

@f(x)
@xi

= l(x)�i(f(x)); i = 1; . . . ; n; x 2 A; (1.3)

exists in a neighbourhood of every point of A when the value of the function f is
prescribed at some point of the neighbourhood.

In the paper, the Fenchel problem of level sets is solved under the conditions
that the boundaries of the nested family of convex sets in Rn+1 are given by C3

n-dimensional differentiable manifolds and the convex sets (so, the boundaries of
the nested family of convex sets as well) determine an open or closed convex set
in Rn+1.

2. Main results

The Fenchel problem of level sets consists of three parts to be solved in the smooth
case:
(1) the common characterization of the equality level sets of a function and the

boundaries of the nested family of convex sets as Riemannian n-dimensional
submanifolds in Rn+1,

(2) the characterization of the convex or generalized convex functions based on
level sets and

(3) the construction of a convex or some generalized convex function by using the
data of the nested family of convex sets so that the convex sets give the level
sets.

Let Rn+1 denote the (n + 1)-dimensional Euclidean space which is a special
Riemannian manifold endowed with the metric G(x) = I , x 2 Rn+1, where I is
the (n+1)�(n+1) identity matrix. Let us assume that a nested family of convex sets
is given in Rn+1 whose boundaries are C3 (three times continuously differentiable
co-ordinate functions) n-dimensional differentiable manifolds, and the convex
sets determine an open convex set in Rn+1. First, the results are formulated by
tensors, then by matrices based on the explicit formulation of tensors in co-ordinate
representations.

Let M be an n-dimensional differentiable manifold and m a point in M . The
tangent space TMm at m is an n-dimensional vector space.



210 T. RAPCSÁK

DEFINITION 2.1. A p-covariant tensor at m (for p > 0) is a real-valued p-linear
function on TMm � TMm � . . .� TMm (p-copies). A tensor is symmetric if its
value remains the same for all possible permutations of its arguments. A 0-covariant
tensor at m is a real number. A tensor field on M is a mapping that assigns a tensor
at m to each m in M .

DEFINITION 2.2. A second-order covariant tensor is positive semidefinite (defi-
nite) at a pointm 2M if the corresponding matrix is positive semidefinite (definite)
on TMm�TMm in any co-ordinate representation. A second-order covariant ten-
sor field is positive semidefinite (definite) on A � M if it is positive semidefinite
(definite) at every point of A.

In our case, the Riemannian metric is a positive definite symmetric second-
order covariant tensor field. In Rn+1, the Euclidean metric induces a Riemannian
metric on every submanifold so that the induced Riemannian metric be equal to
the projection of the Euclidean one to every tangent space. In the case of an n-
dimensional Riemannian submanifold inRn+1, the normal space, orthogonal to the
tangent space with respect to the Riemannian metric, is a one-dimensional subspace
at every point, and the second fundamental tensor field, which is a second-order
symmetric covariant tensor field (e.g., (Spivak, 1979)), provides the second-order
approximation of the manifold related to the direction of the normal vector at every
point.

THEOREM 2.1. Let a three times continuously differentiable function f be defined
on an open convex set A � Rn+1 such thatrf(x) 6= 0, x 2 A; and assume that a
nested family of convex sets in Rn+1 is given so that the convex sets determine the
open convex set A � Rn+1 to within a motion, and the boundaries of the convex
sets are C3 n-dimensional differentiable manifolds. Then, the equality level sets
M [f(x0)] = fx 2 Aj f(x) = f(x0); 8x0 2 Ag of a quasiconvex function f are
equal to within a motion to the n-dimensional differentiable manifolds given by the
boundaries of the nested family of convex sets in Rn+1 iff
(1) the induced Riemannian metrics of the equality level sets and then-dimensional

differentiable manifolds are identical at all the points of A,
(2) the second fundamental tensors of the equality level sets and then-dimensional

differentiable manifolds are identical and positive semidefinite at all the points
of A and

(3) the Riemannian metrics and the second fundamental tensors satisfy the Gauss
and the Codazzi-Mainardi equations (see formulas 3.2 and 3.3) at all the points
of A.

The assumption, which ensures that the boundaries are differentiable manifolds,
implies that the problem can be investigated in a co-ordinate neighbourhood of
every point in the given n-dimensional differentiable manifolds. Thus, the bound-
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aries of the nested family of convex sets in Rn+1 can be studied in co-ordinate
representations by the smooth mappings

x(u; c) 2 A � Rn+1; u 2 U � Rn; c 2 J; (2.1)

whereU is an open set and J an interval. Let us assume that the range of f denoted
by rngf satisfies the condition rngf = J:

DEFINITION 2.3. In a given co-ordinate neighbourhood (2.1), the second funda-
mental quantities can be given in the form of

bij(u; c) =
�
@x2(u; c)
@ui@uj

�T
�(u; c); u 2 U; c 2 J; i; j = 1; . . . ; n; (2.2)

where � = (�1; . . . ; �n+1); �i : U ! R;8i; are the normal vectors of the examined
manifolds. The second fundamental forms are the quadratic forms defined by the
matrix function of the second fundamental quantities on the tangent spaces of
the given manifolds. The second fundamental forms are second-order symmetric
covariant tensor fields on the manifolds.

THEOREM 2.10. Let a three times continuously differentiable function f be defined
on an open convex set A � Rn+1 such thatrf(x) 6= 0, x 2 A; and assume that a
nested family of convex sets in Rn+1 is given so that the convex sets determine the
open convex set A � Rn+1 to within a motion, and the boundaries of the convex
sets are C3 n-dimensional differentiable manifolds. Then, the equality level sets
M [f(x)]; 8x 2 A; of a quasiconvex function f are equal to within a motion to
the n-dimensional differentiable manifolds given by the boundaries of the nested
family of convex sets in Rn+1 iff in a convex co-ordinate neighbourhood (2.1) of
every point of A, in the given differentiable manifolds
(1) the induced Riemannian metrics of the equality level sets and then-dimensional

differentiable manifolds are equal to

G(x(u; c)) = Jux(u; c)TJux(u; c); u 2 U � Rn; c 2 J; (2.3)

(2) the matrices of the second fundamental tensors of the equality level sets and
the n-dimensional differentiable manifolds are positive semidefinite and are
equal to

B(x(u; c)) = Jux(u; c)THxf(x(u; c))Jux(u; c);

u 2 U � Rn; c 2 J; and (2.4)

(3) the matrices of the Riemannian metric G(x(u; c)), u 2 U � Rn, c 2 J; and
the matrices of the second fundamental tensors B(x(u; c)); u 2 U � Rn;

c 2 J; satisfy the Gauss and the Codazzi-Mainardi equations
where Jux(u; c) is the Jacobian matrix of x(u; c) with respect to u at u and c, and
Hxf is the Hessian matrix of the function f with respect to x.
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Since the open set A � Rn+1 provided by the given n-dimensional manifolds
is an (n + 1)-dimensional differentiable manifold, we can introduce tensor fields
on A originated from the n-dimensional manifolds. This remark is important from
the point of view of the geometric structure of the Fenchel problem of level sets,
and allows to solve it under the conditions that the boundaries of the nested family
of convex sets in Rn+1 are C3 n-dimensional differentiable manifolds and the
boundaries of the nested family of convex sets determine an open convex set in
Rn+1.

THEOREM 2.2. Let a nested family of convex sets be given in Rn+1 so that the
boundaries of the convex sets are C3 n-dimensional manifolds and the convex sets
determine an open convex setA inRn+1. If�i(x) 2 C2(A;R); i = 1; . . . ; n+1; � =
(�1; . . . ; �n+1) is the twice continuously differentiable vector field on A originated
from the normal vector fields of the given n-dimensional differentiable manifolds,
there exists a function l 2 C2(A;R) satisfying the compatibility conditions

@l(x)
@xj

�i(x) + l(x)
d�i(x)
@xj

=
@l(x)
@xi

�j(x) + l(x)
d�j(x)
@xi

;

(2.5)
i; j = 1; . . . ; n+ 1; x 2 A � Rn+1;

of the system

@f(x)
@xi

= l(x)�i(x); i = 1; . . . ; n+ 1; x 2 A; (2.6)

such that

B(x) = (rlT (x)�(x) + l(x)J�(x))jTM ; x 2 A; (2.7)

(the gradient of a function is a row vector and the symbol jTM means the restriction
to the tangent space of the given manifolds) is a positive semidefinite matrix function
on A and the Gauss and the Codazzi-Mainardi equations hold, then a uniquely
determined, twice continuously differentiable quasiconvex function f exists on A

such that the equality level sets of f correspond to the boundaries of the nested
family of convex sets when the value of the function f is prescribed at one point of
A.

A quasiconvex function f : A! Rwithrf(x) 6= 0; 8x 2 A; is pseudoconvex
on an open convex set A, so if a condition ensures that a pseudoconvex function
defined on an open convex set is convex transformable, then the Fenchel problem
of level sets is solved.

DEFINITION 2.4. The augmented Hessian matrix of a twice continuously differ-
entiable function f : A! R is defined by

H(f(x); �(x)) = Hf(x) + �(x)rf(x)Trf(x); x 2 A; (2.8)

where � : A! R is a function.
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A necessary condition for the convexifiability of function f over A is the
existence of a function� : A! R such thatH(f(x); �(x)) is a positive semidefinite
matrix for all x 2 A. Sufficient conditions are given in Proposition 8.13 and
Theorem 8.17 of Avriel, Diewert, Schaible and Zang (1988). We shall use one of
them in the following statement.

COROLLARY 2.1. If the conditions of Theorem 2.2 hold, and

rank (rlT (x)�(x) + l(x)J�(x)) � rank B(x) + 1; x 2 A; (2.9)

where the notation ‘rank’ means the rank of the corresponding matrix, then a twice
continuously differentiable convex function f exists on A when the value of the
function f is prescribed at one point of A.

COROLLARY 2.2. If the nested family of convex sets determines a closed convex
setA, the other conditions of Theorem 2.2, and condition (2.9) hold, then a convex
function f exists on A when the value of the function f is prescribed at one point
of A.

Proof. In the case of a closed convex set A, the Fenchel problem of level sets
can be solved in two steps. First, a smooth convex function can be constructed on
the interior (or the relative interior) of the given closed convex set A by Theorem
2.2 and Corollary 2.1. Then, this convex function can be extended on the wholeA
to a convex function, by setting the values of the function f equal to +1 for all
the boundary points of A. B

We remark that another possibility for the extension of the convex function f

defined on the interior of the setA is to close the epigraph of f by obtaining a lower
semi-continuous function on A, then to assign the value +1 for the remaining
boundary points.

3. Preliminary Lemmas and Theorems

In order to prove the theorems, we will use some co-ordinate representations of the
given n-dimensional manifolds and the open convex set A which is an (n + 1)-
dimensional manifold.

DEFINITION 3.1. Let A � Rn be an open convex set. A function f : A ! R

is said to be locally convex (pseudoconvex) if it is convex (pseudoconvex) in a
convex neighbourhood of every point of A.

The following theorem is a Corollary of Theorem 2.2 in Rapcsák (1991), proved
for the geodesic convex functions with respect to the Riemannian metrics.

THEOREM 3.1. Let A � Rn be an open convex set. Then, a function f : A! R

is convex iff it is locally convex.
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Proof. If the Riemannian manifold M = Rn, and the Riemannian metric is
equal to the Euclidean one in Theorem 2.2 [Rapcsák, 1991b], then the geodesic
convex sets become convex sets, the geodesic convex functions convex functions
and the property of Theorem 3.1 is proved. B

The statement of Theorem 3.1 was proved for pseudoconvex functions by
Komlósi (1983). Though the differential geometric theorems most important for
us were expanded by Voss (1880), we will use the versions published in the
book of Eisenhart (1964). The following statement ensures the existence of a
non-null normal vector field for every given manifold. This result guarantees the
consideration of nontrivial second fundamental forms in the direction of this vector
field.

THEOREM 3.2 (Eisenhart, 1964, p.144). The normals to an n-dimensional Rie-
mannian manifold M with the fundamental tensor G = (gij) immersed in Rn+1

form a null vector system iff the determinant of the matrices of G is zero in every
co-ordinate representation.

Now, the n-dimensional Riemannian submanifolds of Rn+1 are characterized.

THEOREM 3.3. (Voss, 1880; Eisenhart, 1964, p.187) In order that an n-dimen-
sional Riemannian manifold M with the Riemannian metric G = (gij) be a real
Riemannian submanifold of Rn+1, it is necessary and sufficient that the system of
partial differential equations

n+1X
�=1

c�
@x�(u)
@ui

@x�(u)
@uj

= gij(u); i; j = 1; . . . ; n; u 2 U � Rn; (3.1)

admit a solution x(u) 2 Rn+1, u 2 U � Rn; with a full rank Jacobian matrix for
every co-ordinate neighbourhood of M .

The signs of the c’s in (3.1) depend on the character of the tensor G. If the
matrices of G are positive definite, then all the c’s are equal to 1. The integrability
conditions of the system of partial differential equations (3.1) are formulated in the
following statement:

THEOREM 3.4 (Eisenhart, 1964, p.198). In order that G = (gij) and B = (bij)
be the first and second fundamental tensors of an n-dimensional Riemannian
manifold M immersed in Rn+1, respectively, it is necessary and sufficient that the
Gauss and the Codazzi-Mainardi equations satisfy, i.e.,

Rijkl = e(bikbjl � bilbjk); (3.2)

bij;k � bik;j = 0; (3.3)
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for i; j; k; l = 1; . . . ; n; where Rijkl are the components of the Riemannian curva-
ture tensor of M with respect to G, bij;k means the covariant differentiation of the
second fundamental quantities with respect to G and e = 1 or e = �1. Thus, the
Riemannian manifold M is determined to within a motion in Rn+1.

LEMMA 3.1 (Rapcsák, 1994). If f is a twice continuously differentiable function
on an open set A andrf(x) 6= 0, x 2M [f(x0)], then

Hf(x)jTM = �Brf=jrf j(x); x 2M [f(x0)]; (3.4)

where Brf=jrf j is the matrix of the second fundamental quantities of M [f(x0)] in
a co-ordinate representation and the index jTM denotes restriction to the tangent
space TM at the point x.

The necessary part of the following theorem was first proved by Arrow and
Enthoven (1961) and the sufficiency part by Crouzeix (1980).

THEOREM 3.5 (Arrow and Enthoven, 1961; Crouzeix, 1980). Let f be a twice
continuously differentiable function on the open convex set A � Rn and sup-
pose that rf(x) 6= 0 for every x 2 A: Then, f is quasiconvex on A iff

x 2 A; v 2 Rn; vTrf(x) = 0 ) vTHf(x)v � 0: (3.5)

4. Proof of Theorem 2.1 and Theorem 2.10

The gradient vectorrf is different from zero on A, thus every equality level set is
ann-dimensional differentiable manifold inRn+1.Rn+1 is a Riemannian manifold
with G(x) = I , x 2 Rn+1; which metric induces a Riemannian metric in every
n-dimensional differentiable submanifold. A quasiconvex function f : A ! R

with rf(x) 6= 0; 8x 2 A; is pseudoconvex on an open convex set A, so the
problem can be considered in co-ordinate representations.

I. Necessary part. Assume that every equality level set coincides to within
a motion with the corresponding n-dimensional differentiable manifold. If we
introduce the induced Riemannian metric on the differentiable manifolds, then by
Theorem 3.3, we obtain real n-dimensional Riemannian submanifolds in Rn+1,
and that the induced Riemannian metrics are identical at all the points of A,
furthermore, that they can be given by (3.1) in every co-ordinate representation.
By Theorem 3.2, the normal vectors of every equality level set coincide with the
normal vectors of the corresponding n-dimensional differentiable manifold, thus
the second fundamental tensors are identical at all the points of A. By Lemma 3.1
and Theorem 3.5, the second fundamental tensors are positive semidefinite at all the
points of A. By Theorem 3.4, the Riemannian metric and the second fundamental
tensor satisfy the Gauss and the Codazzi-Mainardi equations at all the points of A.

II. Sufficiency part. Assume that conditions (1), (2) and (3) of Theorem 2.1 hold.
By Theorem 3.4, this Riemannian metric and the second fundamental tensor field



216 T. RAPCSÁK

determine unambiguously an n-dimensional Riemannian submanifold to within a
motion iff the Gauss and the Codazzi-Mainardi equations (3.2 and 3.3) hold at all
the points of the given manifolds, so every equality level set coincides to within a
motion with the corresponding n-dimensional manifold, and by Theorem 3.5, the
function f is quasiconvex. B

5. Proof of Theorem 2.2

Due to the manifold structure of the boundaries of the nested family of convex sets,
they can be studied in co-ordinate representations (2.1). A quasiconvex function
f : A ! R with rf(x) 6= 0; 8x 2 A; is pseudoconvex on an open convex set
A. By Theorem 3.1 and Komlósi’s result (1983), both convex and pseudoconvex
functions can be locally characterized, thus the Fenchel problem can be solved in
co-ordinate representations.

By the Frobenius theorem (e.g., (Spivak, 1979)), a uniquely determined, twice
continuously differentiable solution of system (2.6) exists in a neighbourhood of
every point in A if compatibility conditions (2.5) hold on A and the value of
function f is prescribed at some point of the neighbourhood. Now, it will be
shown that it is enough to prescribe a value of f at one point only, in an arbitrary
co-ordinate neighbourhood, then all the function values of f are determined on
A. The proof is indirect. Let us assume that the value of f is prescribed at the
point x0 2 A and there exists a co-ordinate neighbourhood for which at least one
value of f is not determined. Because the set A is convex, there exists a line
segment between the point x0 2 A and the point x̂ 2 A where the value of f is
not determined. The line segment is a compact set in A, thus there exists a finite
number of co-ordinate neighbourhoods such that these cover the line segment.
Moreover, a finite number of co-ordinate neighbourhoods can be chosen so that
a chain of co-ordinate neighbourhoods be obtained and every member of this set
should have a nonempty intersection with only one from the next, subsequent
neighbourhoods in the direction of the vector x̂� x0. This is a contradiction, since
all the values of the function f are determined on this line segment by this chain of
co-ordinate neighbourhoods. It can be seen that two different chains of co-ordinate
neighbourhoods with the same starting and end points determine the same function
value at the end point.

By introducing the induced Riemannian metric on the boundaries of the nested
family of convex sets, and by Theorem 3.3, we obtain n-dimensional Riemannian
submanifolds - immersed in Rn+1 - with the first fundamental tensor G, given by
(2.3) in any co-ordinate representations (2.1). By Lemma 3.1, we have that the sec-
ond fundamental tensor is determined by (2.7) in any co-ordinate representations.
By Theorem 2.1, the equality level sets of the quasiconvex function f are equal to
within a motion to the boundaries of the nested family of convex sets, from which
the statement follows. B
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